
Abstract. Employing separate cluster ansatz in time-
independent and time-dependent wave-operators, cou-
pled-cluster (CC) response theory is generalized to
multireference (MR) expansion spaces. For state ener-
gies, this corresponds to the MR secular problem with an
arbitrary similarity-transformed e�ective Hamiltonian,
~H � Xÿ1HX. The e�ective Hamiltonian can be generated
via size-extensive CC methods. Thus the states in MR
linear response theory (MRLRT) maintain the usual CC
core-extensive properties. We have used the Gelfand
unitary group basis of the spin-adapted con®gurations to
construct the matrix of ~H in the MR excitation space. As
a preliminary application, the CC singles and doubles
e�ective Hamiltonian is applied to excitation and pho-
toionization energies of the CH� and N2 molecules, and
is compared with experimental results and results from
other numerical procedures including conventional CC
linear response theory (CC-LRT), MR and full con®g-
uration interaction (MRCI and FCI) methods. The
numerical results indicate that MRLRT reproduces
valence and external excited states quantitatively, com-
bining the best features of CC-LRT and MRCI.

Key words: Coupled-cluster theory ± Response theory ±
E�ective Hamiltonian ± Multireference con®guration
space ± Excited states ± Core-extensive

1 Introduction

Single-reference coupled-cluster theory (SRCC) [1±2]
has been well accepted as one of the most promising
methods in ab initio molecular orbital theory, including
in®nite-order perturbational series in a size-extensive

manner. Theoretical and algorithmic developments in
CC theory enabled us to calculate static molecular
properties accurately [3, 4] around the equilibrium
geometry with a large one-electron expansion set [5].
For excited states and for bond dissociations, however,
multireference (MR) model spaces are needed to repro-
duce quasi-degeneracy among states. The MRCC theo-
ries have been developed as Hilbert-space state-universal
[6±8] and Fock-space valence-universal approaches [9,
10] in the complete and incomplete model spaces.
Although these approaches are capable of treating
excited and ionized states, it is di�cult to avoid the
intruder state problem which arises from the change of
geometrical parameters. In this context, another impor-
tant and growing ®eld is the state-selective (SS) MRCC
approaches [11±15] which are less sensitive to intruder
states at any molecular geometry. As these methods are
in principle for the lowest state in a given symmetry as in
SRCC, additional methods are needed for energy
di�erences.

Dynamic properties including excitation energies
have been calculated from the CC responses. CC linear
response theory (CC-LRT) based on the time-dependent
CC formalism was ®rst put forward by Monkhorst [16].
Many investigators later discussed in detail how to
compute such dynamic properties [17±21]. For excitation
energies, other CC-based terminologies have been used,
such as the symmetry-adapted cluster con®guration in-
teraction (SAC-CI) method [22] and the equation of
motion CC (EOM-CC) method [19, 23]. Besides ap-
proximations to the operator products and to the spin
symmetry, all of these methods are essentially identical
as long as energy di�erences are concerned. As the CC
wave function is size-extensive, the CC-LRT features
core-extensive properties in the excited-state wave
function [24] and size-intensive excitation energies [21].
Recent important developments in this ®eld are the
atomic orbital (AO) integral driven approach [25] and
the similarity-transformed EOM-CC method [26]. Es-
pecially, the latter makes it possible to ignore two-elec-
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tron excited determinants with the aid of notion in the
Fock space approach.

It is well known that the excitation energies of the
two- or more electron excited states are overestimated in
the CC single and double LRT (CCSD-LRT) due to the
lack of interactions between excited and remaining
electrons. Thus MR model spaces are needed to calcu-
late general excited states based on such SSCC methods.
Some authors have investigated extensions of CC-LRT.
SAC-CI employed the complete active space (CAS) and
the exponentially generated CI spaces [27]. Recently,
Ajitha and Pal [28] developed a time-dependent MRCC
response approach. Another development of LRT from
a di�erent theoretical point of view has been suggested
most recently by Chatterjee et al. [29], which is the linear
response formulation of the state-speci®c MRCC
method [14]. The present formulation is similar to that
of Ajita and Pal and of Monkhorst [16], but features
more ¯exible construction of the method employing
individual wave-operators in time-dependent and time-
independent components. Starting with such a time-de-
pendent CC theory, we generalize CC-LRT to the MR
expansion spaces (MRLRT) in Sect. 2. Spin-adapted
con®guration state functions (CSFs) based on the
Gelfand unitary group, which have been used extensively
in MRCI methods, are employed as expansion func-
tions. A preliminary application of the CCSD e�ective
Hamiltonian to MRLRT is investigated in Sect. 3.
Results and discussions are given in Sect. 4.

2 Generalization of CC response theory

We start with a general response theory for a molecular
system in the presence of an adiabatically switched-on
perturbation,

1�t� �
X

x

1�x�eatÿixt ; �1�

where a is a real positive in®nitesimal and
1��x� � 1�ÿx� due to the hermitian nature of the
Hamiltonian. Following the suggestion of Monkhorst
[16], we use the time-dependent CC wave function in the
exponential form,

W�t� � exp�R�t� ÿ iE0t�W0 ; �2�
where time-independent W0 and E0 are the exact wave
function and energy at t � ÿ1, respectively, and the
time-dependent vacuum phase factor, exp�ÿie�t��, is
implicitly put into the exponent, R�t�, which includes
an imaginary identity operator. Most time-dependent
CC theories assume that the time-independent and time-
dependent amplitudes have the same structures of hole-
particle excitations. We do not use this convention to
make the present method more ¯exible. The time-
dependent amplitudes are expanded by

R�t� � R�1��t� � R�2��t� � � � � ; �3�
where the superscript indicates the order of expansion in
x as

R�1��t� �
X
x

R�1��x� ia�eatÿixt ; �4�

R�2��t� �
X
x1x2

R�2��x1 � ia;x2 � ia�e2atÿix1tÿix2t : �5�

The wave function is transformed with an arbitrary
time-independent wave-operator which does not change
any physical property,

W�t� � X ~W�t� : �6�
Multiplying Xÿ1 to the left, the time-dependent Schro-
dinger equation becomes,

i
d
dt

~W�t� � � ~H � ~1�t�� ~W�t� ; �7�
where the time-independent and time-dependent parts of
the e�ective Hamiltonian are

~H � Xÿ1HX ; �8�
~1�t� � Xÿ11�t�X : �9�
We expand each order of the Fourier component
associated with disconnected products of the exponential
in terms of an orthonormalized basis function, Ujf g,
R�x1 � ia; . . . ;x2 � ia� ~W0

�
X

j

Ujrj�x1 � ia; . . . ;x2 � ia� ; �10�

including the time-independent part,

~W0 �
X

j

Ujc0j : �11�

Equating contributions in power of x and taking
projections on Uj yields an explicit expression of the
time-dependent amplitudes. The ®rst- and second-order
equations convey information on the linear and the
quadratic coe�cients,

r�1��x� � ÿ� ~Hÿ xI�ÿ1~1�1��x� ; �12�

r�2��x1;x2� � ÿ� ~Hÿ �x1 � x2�I�ÿ1~1�2��x1;x2� ; �13�
where

� ~H�jk �


Ujj ~H ÿ E0jUk

�
; �14�

�~1�1��x��j �


Ujj~1�x�j ~W0

�
; �15�

�~1�2��x1;x2��j �
�

Uj

��~1�x1�R�1��x2�

� ~1�x2�R�1��x1�
�� ~W0

�
: �16�

It is clear from the exponential structure of the wave
function that all disconnected terms naturally vanish as
a result of the lower-order expansion conditions as long
as


UjjR�t� is a member of the expansion set. So the

present form is identical to the usual expression using
commutators. The straightforward calculation of expec-
tation values of a time-independent operator requires
evaluations of time-evolving density matrices, which
include nonterminating series of operator products.
Dalgaard and Monkhorst [18] discussed the connection
between the vacuum amplitude in adiabatic perturbation
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theory and the level-shift function in CC theory for LR
functions Koch and coworkers [21] proposed another
method using biorthogonal counterparts of the ket
states. We will discuss in detail the method calculating
response functions elsewhere. The poles of the time-
dependent coe�cients correspond to the excitation
energies including the initial state, x � 0, which are
obtained by diagonalizing ~H. In the present formulation,
the choices of the wave-operator and the expansion set
are arbitrary.

Variations in the choice of X, and the expansion
space spanned by Uj provide many possibilities of the
method. Ideally, the former plays a role in reproducing
universal properties as dynamic correlation e�ects,
whereas the latter treats more or less state-speci®c
properties such as near-degeneracy correlation, residual
pair-collision and polarization e�ects. In CC-LRT, the
wave-operator has an exponential form,

X � exp�T � : �17�
Usually a subset of the expansion space induced by T is
chosen as Ujf g. Accordingly the CC reference determi-
nant is an eigenfunction in the absence of the pertur-
bation, ~W0 � U0. In CCSD-LRT, T � T1 � T2, Ujf g
consists of the reference and the single and double
substitutions. The orbital relaxation and the pair
correlation e�ects are dealt with by the wave-operator
and are put into the e�ective Hamiltonian. Thus CCSD-
LRT reproduces any one-electron excited state including
Rydberg series accurately around the equilibrium geom-
etry (see Fig. 1a and b). The method, however, includes
the following shortcomings. (1) Interactions between
excited and remaining electrons are not included for
two- or more electron excited states (Fig. 1c). Accord-
ingly the excitation energies are overestimated for these
states. (2) When the system stays away from the
equilibrium atomic distances, the wave-operator starts
to be dominated by near-degeneracy correlation e�ects,
making the original LR expansion space insu�cient.

Apparently MR treatments are needed to overcome
these di�culties and CSFs such as the Gelfand unitary
group basis [30±34] can be employed. For state energies
this corresponds to the MRCI secular problem in which
H is replaced by ~H ,

Ujj ~H ÿ �E0 � xI�j ~WI

� � 0 ; �18�
~WI �

X
j2MRCI

UjcIj : �19�

The ket eigenstates are nonorthogonal due to the
nonhermiticity of ~H . One notes that the reference
vacuum should be included in the expansion space in
contrast to the usual CC-LRT, as the reference deter-
minant is not necessarily the eigenfunction of ~H . To
obtain an e�cient wave-operator at any geometry, it is
preferable to generate T amplitudes in MRCC methods.
One possibility is to prepare all of the hole-particle
excitation operators which induce the full MR expansion
functions, borrowing the SR formalism,

T � T1 � T2 � � � � � TN�M ; �20�

Tk �
Xmin�N ;k�

next�0

Xmin�N ;k�

ncore�0
T �next;ncore�k ; �21�

where N and M are maximum excitation levels of the
outer-valence and the valence excitations, and next and
ncore represent the external creation and the core
annihilation levels, respectively. This kind of expansion
has been investigated by Adamowicz and coworkers [13]
in the SSMRCC method. Evaluations of T amplitudes
and subsequent ~H , however, include tedious diagram-
matic manipulations of nonlinear operator products.
Furthermore, the state-selectivity in T away from the
equilibrium geometry is not important as mentioned
previously. Although it is possible to separate the
state-speci®c portion, as a CAS wave function,
exp�T val�U0 / ~WCAS, the residual is still too complicated

Fig. 1a±e. Schematic represen-
tations of electronic states in
coupled-cluster single and
double linear response theory
(CCSD-LRT) (a±c) and
(MRLRT) with a CCSD e�ec-
tive Hamiltonian (d, e). The
black and white circles represent
occupied and vacant orbitals,
respectively. The arrows denote
interactions and excitations. Si-
multaneous interactions (dotted
arrows) are included in the
ground-state CCSD as
exp�T1 � T2� (a), which ensures
the core-extensivity of the
CCSD-LRT wave functions (b,
c). Pair interactions between
excited and remaining electrons
are not included for two-elec-
tron excited states in CCSD-
LRT (c). In the MR picture,
such states are treated as va-
lence two-electron excited states
(e) maintaining core-extensivity.
Excitation levels of R are with
respect totheclosedshellvacuum
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to handle in large model spaces. In this particular work,
we employ the CCSD e�ective Hamiltonian in MRLRT,
which will be similar to that generated by operators in
Eqs. (20) and (21) around the equilibrium geometry,
focusing on general excited states. The valence and
external Rydberg excited states are usually multi- and
one-electron processes, respectively, as discussed in the
SAC-CI method employing the exponentially generated
CI space [27]. The present work emphasizes the use of
MR expansion spaces in which e�cient algorithms for
matrix elements are readily available, treating one- and
multi-electron processes in the external and valence
spaces of the MR functions (Fig. 1d and e), respectively.

Before proceeding with an application of MRLRT,
we summarize possible combinations with other meth-
ods for a wave-operator, X. The bond dissociation
increases quasi-degeneracy among valence orbitals. To
generate wave-operators which represent universal
properties, it will be necessary to employ MRCC
methods. One convenient form is the approximate
MRCC wave-operator used by Banerjee and Simons
[11]. Although the approximate form can treat only
``external'' excitations, the resulting ~H has the same ex-
pression as the CCSD one. Furthermore, the ignored
``internal'' and ``semi-internal'' excitations can be treated
afterward in MRLRT. In this way, ®rst-order MRLRT
will be a good approximation to describe any potential
energy surface of valence excited states if the external
correlation e�ects are transferable. For external excited
states such as Rydberg series, external doubles are
needed as the SR doubles in the usual CCSD-LRT.
Treating these e�ects in terms of an exponential wave-
operator leads to noncommutative algebra for cluster
amplitudes such as S�ei! ee�, where e and i represent
external and internal lines, respectively. Use of the
normal ordered exponential form, eS

� 	
, was proposed in

the MRCC methods [6] and a similar idea was applied
for excitation energies [26]. Such augmentations will be
also possible in MRLRT.

3 Application of the CCSD e�ective Hamiltonian
in MRLRT

Henceforward, i; j; . . . ; a; b; . . . and p; q; . . . denote the
hole, particle and general labels of spatial orbitals,
respectively. We assume that the reference function is a
closed shell restricted Hartree-Fock (RHF) type deter-
minant and that the T amplitudes are spin-adapted.
Then, the CCSD e�ective Hamiltonian is spin-free and is
conveniently written in terms of the unitary group
generator, Epr;qs;... �

P
r...r0

a�pra�qr0 :::asr0arr, by

~H � ~H0 � ~H1 � � � � � ~H6 ; �22�
~H0 �



U0jH exp�T �jU0

�
; �23�

~H1 �
X

pq



pj ~f jq�fEpqg ; �24�

~H2 � 1

2

X
pqrs



pqj ~V jrs

�fEpr;qsg ; �25�

and similar expressions for higher-body terms, where the
braces represent normal ordering with respect to the
RHF vacuum. The evaluation of ~H is simpli®ed by
introducing a similarity-transformed Hamiltonian with
exp�T1�, which does not change the operator rank of the
original Hamiltonian,

~H � exp �ÿT2�Ĥ exp �T2� ; �26�
Ĥ � exp �ÿT1�H exp �T1�
�
X

pq

ĥpqEpq � 1

2

X
pqrs



pqjV̂ jrs

�
Epr;qs : �27�

This particularly useful transformation has been applied
in AO integral-driven CC, CC-LRT [5, 25] and nonor-
thogonal CC methods [15]. Matrix elements of the
e�ective Hamiltonian based on coupled-pair many
electron theory or the CCD method were ®rst derived
by one of us up to two-body interactions [17]. In the
present application, an expression identical to the
similarity-transformed Hamiltonian, Ĥ can be used.
Figure 2 shows Goldstone diagrams included in the
CCSD e�ective Hamiltonian. The matrix elements,
ah j ~f ij i and abh j ~V ijj i are zero because of the CCSD
condition. It is more convenient to express ~H in the
ordinary product form rather than the normal product
one when evaluating matrix elements over CSFs. We can
rewrite the e�ective Hamiltonian up to the two-body
part in the ordinary product form,

~H �
X

pq



pj~hjq�Epq � 1

2

X
pqrs



pqj ~V jrs

�
Epq;sr

� ~H3 � � � � � ~H6 ; �28�
where we use the fact that ~H0 does not a�ect the higher-
body terms in the reverse hole-particle transformation.
The matrix elements which are basic quantities in the
present application are shown in Table 1.

Among the diagrams in ~Hn �n � 3�, single contrac-
tions which are linear to T2, T21a and T21b, are par-
ticularly important. In the usual CCSD-LRT, only a few
shapes of the diagrams survive as discussed by Stanton
and Bartlett [23b]. We assume that all of the hole indices
belong to the internal orbital space in MRLRT but
overlap between the particle and the valence orbital
spaces is allowed, (see Fig. 3). In this case, all shapes of
the diagrams should be considered due to the overlap.
The present purpose is to devise a general MRLRT
program utilizing state-of-the-art methods for coupling
coe�cients over CSFs. However, an e�cient way to
evaluate three-body coupling coe�cients is not well
known especially in the graphical unitary group
approach [30±34], where one- and two-body coupling
coe�cients are generated e�ciently by factorizations
according to segment shapes. Furthermore, explicit
treatment of the three-body matrix elements is costly.

Fig. 2. Goldstone diagrams in the CCSD e�ective Hamiltonian. All
T1 operators are included implicitly in the energy vertices.
Horizontal arrows denote both hole and particle indices

c
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Thus they should be treated ``on-the-¯y'' during the it-
erative scheme which includes matrix-vector multiplica-
tion similar to that in the direct CI method,

rIj �
X

k



Ujj ~H jUk

�
cIk ; �29�

where rI is a residual of the trial vector cI . Another point
is that inclusion of the three-body terms a�ects the entire
part of the matrix element in the ordinary product form.
In practice, it is simpler to apply the Wick theorem
regarding the ordinary products as normal ordered ones,
i.e. simply the creation operators are on the left of the
annihilation ones. Some of the diagrammatic correspon-
dences of the connected products in the ordinary
product form are given in Table 2. It is always possible
to decompose the three-body unitary group generators
into one- and two-body ones. However, as each of the
decomposed generators extends over the full spatial
symmetry, this decomposition includes additional cal-
culations of coupling coe�cients, which are computa-
tionally less preferable. In this particular work, we
include the three-body contributions in the reference
space, k 2 P , which will dominate the weights in the
MRLR expansion. In this case, r is a member of the
internal orbitals. Introducing dummy orbitals, f, in each
symmetry, using the relation,

Epr;qfEai;fj � Epr;qf;ai;fj � Eai;qj;pr � dra�Epi;qf;fj � Epi;qj� ;
�30�

and inserting the resolution of identity to the generator
products, the three-body density part becomes

rV̂ Ts � rV̂ Ts� ÿ r x 0 ; �31�

rV̂ Ts�
Ij �

X
l

X
prqb



UjjEpr;qfjY f

l

�

pqjV̂ jrb

�
Q
�l�
I ;b ; �32�

Q
�l�
I ;b �

X
lk

X
abij



abjT2jij

�

Y f

l jEai;fjjUk
�
cIk ; �33�

rx0
Ij �

1

2

X
k

X
pqij



pqjx0jij�
UjjEpi;qjjUk

�
cIk ; �34�



pqjx0jij� � X

a2internal

X
b

�1� Pab�


pqjV̂ jab

�

abjT2jij

�
;

�36�

where Y f
l denotes intermediate states which are ®rst-

order external CSFs to the dummy orbital, l indicates
occupations and spin-couplings of the N ÿ 1 electronic
valence states and Pab represents a permutation of the a
and b orbital indices. We also use the fact that second-
order intermediates can be excluded because of the
valence orbital index, r. In a similar way, the residual of
the TsV̂ part becomes

rTsV̂ � rTsV̂
� � 2r y ; �37�

rTsV̂
�

Ij � ÿ
X

l

X
abij



UjjEai;bfjY f

l

�

ab
��T2jij

�
Q
�l�
I ;j ; �38�

Table 1. The e�ective Hamiltonian in the ordinary product form,
including the energy, single- and double-open diagrams (0+1+2)a

Matrix element De®nition

haj~hjii ~h
a
i � ÿ2~V

aj
ij � ~V

aj
ji

hij~hjai ~h
i
a � ĥ

i
a

hij~hjji ~h
i
j � ĥ

i
j

haj~hjbi ~h
a
b � ĥ

a
b � �wai

ib ÿ 2zai
bi�=2

habj~V jiji ~V
ab
ij � 0

hijj~V jaki ~V
ij
ak � V̂

ij
ak

haij~V jbci ~V
ai
bc � V̂

ai
bc

hijj~V jabi ~V
ij
ab � V̂

ij
ab

hijj~V jkli ~V
ij
kl � �V̂ � x�ijkl

habj~V jcdi ~V
ab
cd � �V̂ � y�ab

cd

haij~V jbji ~V
ai
bj � �V̂ � z�ai

bj

haij~V jjbi ~V
ai
jb � �V̂ � w�ai

jb

haij~V jjki ~V
ai
jk � �V̂ � u� w� x� z�ai

jk

habj~V jici ~V
ab
ic � �V̂ � v� w� y � z�ab

ic

hakjujiji uak
ij � uka

ji � f̂
k
btab

ij

habjujiji uab
ij � f̂

b
c tac

ij � f̂
a
c tcb

ij

habjvjici vab
ic � vba

ci � ÿf̂
j
ctab

ij

habjvjiji vab
ij � ÿf̂

k
j tab

ik ÿ f̂
k
i tab

kj

hpajwjqii wpa
qi � wap

iq � V̂
pj
qb�2tab

ij ÿ tab
ji � ÿ V̂

pj
bqtab

ij

habjwjiji wab
ij � V̂

ak
ic �2tbc

jk ÿ tbc
kj � ÿ V̂

ak
ci tbc

jk

� V̂
bk
jc �2tac

ik ÿ tac
ki � ÿ V̂

bk
cj tac

ik

hpqjxjiji xpq
ij � V̂

pq
abtab

ij

habjyjpqi yab
pq � V̂

ij
pqtab

ij

hpajzjiqi zpa
iq � zap

qi � ÿV̂
pj
bqtab

ji

habjzjiji zab
ij � ÿV̂

bk
ci tac

kj ÿ V̂
ak
cj tbc

ki

a Einstein summation convention is used

Fig. 3. Illustrative de®nitions of orbital spaces used in the CC and
the MRLRT methods
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Q
�l�
I ;j �

X
lk

X
pqrj



jqjV̂ jpr

�

Y f

l jEfp;qrjUk
�
cIk ; �39�

ry
Ij �

1

2

X
k

X
abpq



abjyjpq

�

UjjEap;bqjUk

�
cIk : �40�

The supplementary contributions, rx0 and 2ry , are
subtracted in the e�ective two-electron integrals prior
to an iterative scheme. The matrix elements,



aj~hji� and


abj ~V jij�, are determined such that the CCSD condition
is satis®ed. The resulting one- and two-body matrix
elements are listed in Table 3. Both contributions of rV̂ Ts

and rTsV̂ are treated simultaneously by forming the vector
Q
�l�
I whose size is equal to the number of orbitals in the

symmetry of contracted lines for each l. Although Q
�l�
I

includes zero matrix elements, the computation time for
these contributions is small. The e�ective Hamiltonian is
diagonalized using a generalized Davidson procedure for
non-hermite matrices [35±36], which gives a convergence
similar to the usual CI secular problems.

4 Results and discussion

4.1 Excitation energies of CH�

Full CI (FCI) results are available for the CH� molecule
[37] which has been compared with results from Fock
space MRCC, CCSD-LRT and analogous models [21,
23b, 38, 39]. The size of the system is small enough for
calculations at any level. The previous results, however,
show that it is di�cult for CCSD-LRT to treat some
low-lying states of this molecule which consists of two-
electron excited con®gurations. It will be useful to
employ the present MRLRT for such states. The
�5s3p1d=3s1p� basis set and the internuclear distance,
R � 2:13713 a.u., are used as in Ref. [37]. We use natural
orbitals based on the full valence state-averaged CA-
SSCF calculation for the lowest two 1R� and one 1D
states. The ground-state electronic con®guration is
1r22r23r2 with a relatively large double excitation,
T2�3r2 ! 1p2�. We performed second-order MRLRT
calculations with a reference space in which the four
electrons are distributed in ®ve orbitals, three r and two
p, and the r�1s� is treated as a core orbital, excitations of
which are allowed by MRCI and the MRLRT. The

three-body interactions linear to T2 are included in the
internal-internal (PP) block of the e�ective Hamiltonian
matrix.

In Table 4, we compare excitation energies. The
MRCI results agree well with the FCI excitation energies
for the valence excited states. The internal weight,
however, decreases especially in 21R� and 31R�, and
accordingly the excitation energies are overestimated.
On the other hand, for one-electron excited states, 21R�,
31R�, 11P and 21P, the CCSD-LRT results are in good
agreement with the FCI ones. The MRLRT results also
agree even in the absence of the three-body interactions
except for 31R� which includes a non-negligible amount
of two-electron excitations due to the CAS natural or-
bitals. The three-body interactions do not contribute to
the energy matrix elements of the one-electron excited
CSFs. Thus they are less important for one-electron
processes. For the states 11R�, 11D and 21D, the CCSD-
LRT excitation energies are overestimated by 0:5±0:9

Table 2. Diagrammatic corre-
spondences of operators in Ĥ
and �Ĥ ; T2�

Symbola Operators Diagrammatic correspondence W1 W2b

ĥ ĥp
qEpq

S10, E10 y n

V̂ V̂ pq
rs Epr;qs=2 D20, E20a, E20b y y

ĥTs ĥp
btab

ij Eai;pj
D11a, S11a, S11b y y

Tsĥ ÿĥj
btab

ij Eai;bp
D11b n y

V̂ Td xpq
ij Epi;qj=2 D21b, S21a, S21b, E21a, E21b y y

TdV̂ ÿyab
pq Eap;bq=2 )D21c n y

V̂ Ts V̂ pq
br tab

ij Eai;pj;qr
T21a, D21a, D21d, D11a,

S21c, S21d, S11a, S11b
y y

TsV̂ ÿV̂ pj
qr tab

ij Eai;pq;br T21b, 2D21c, D11b n y

aTs and Td represent single and double contractions, respectively
bW1 and W2 represent diagrams included in the T1 and T2 working equations, respectively

Table 3. The e�ective Hamiltonian in the ordinary product form,
including the energy, single-, double- and linear triple-open
diagrams (0+1+2+3L)a

Matrix element De®nitionb

haj~hjii ~h
a
i � ÿ2�~V � u�2� � z=2�aj

ij � �~V � u�2� � W =2�aj
jihij~hjai ~h

i
a � ĥ

i
a

hij~hjji ~h
i
j � ĥ

i
j

haj~hjbi ~h
a
b � ĥ

a
b

habj~V jiji ~V
ab
ij � ÿ�u�2� � v�2� � w� x0 � z�ab

ij
hijj~V jaki ~V

ij
ak � V̂

ij
ak

haij~V jbci ~V
ai
bc � V̂

ai
bc

hijj~V jabi ~V
ij
ab � V̂

ij
ab

hijj~V jkli ~V
ij
kl � �V̂ � xÿ x0�ijkl

habj~V jcdi ~V
ab
cd � �V̂ � y�ab

cd
haij~V jbji ~V

ai
bj � V̂

ai
bj

haij~V jjbi ~V
ai
jb � V̂

ai
jb

haij~V jjki ~V
ai
jk � �V̂ � u�1� � xÿ x0�ai

jk
habj~V jici ~V

ab
ic � �V̂ � v�1� � y�ab

ic

a The notation is same as in Table 1
b 1 and 2 in parentheses represent the one- and two-electron parts of
f̂ in u and v
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eV. This is attributed to the lack of pair interactions
between excited and remaining electrons. In MRLRT,
these e�ects are treated; however, it is necessary to in-
clude the three-body diagrams which are as important as
the residual dynamic correlation e�ects, 0:3±1:0 eV.
MRLRT (0+1+2+3LPP) reproduces entire excitation
energies accurately. This means that the best features of
CCSD-LRT and MRCI are combined in MRLRT as
described in Sect. 2.

4.2 Ionization energies of N2

Ionization processes of the N2 molecule have been
studied in terms of vacuum ultraviolet photoelectron
spectra and compared with theoretical calculations [27,
40, 41]. As ionized states below about 30 eV are of
valence character, the MRCI approach works well for
these states. In this work, we use a relatively compact
�4s3p2d� basis set of an augmented version of Dunning's
correlation-consistent valence double zeta [42]. The d-
type functions are used as six-component Gaussian-type
functions. Natural orbitals are generated based on the
full valence CASSCF in a way similar to the previous
calculation with respect to the lowest 1R�g and 1Du states
of N2. The internuclear distance is assumed to be 2.035
a.u. In subsequent calculations of CCSD, MRCI and
MRLRT, a couple of 1s orbitals are treated as frozen
core. The lowest ionized states in the R�g , Pu and
R�u symmetries are one-electron processes, i.e. simple
detachments of single valence electrons. As the unde-
tached electrons remain without orbital migrations,
most of the dynamic correlation e�ects are included in
the CCSD e�ective Hamiltonian. Thus it can be
considered that such states can be treated by MRLRT
with ®rst-order external con®gurations to reproduce
orbital relaxation e�ects, if the dynamic correlation is
transferable between ionized and neutral states. We use a
small CAS including only ®ve doubly occupied valence
orbitals of N2, which is referred to as the S-model space.
On the other hand, the other ionized states include
excitations to pg orbitals. To treat them, the two orbitals

are added to the CAS, which is referred to as the L-
model space. Although the linear three-body interac-
tions are included as in the previous example, this makes
no di�erence in the S-model space case.

Total and ionization energies from MRCI and
MRLRT are shown in Table 5. In the S-model space
calculation, the ®rst-order results between the two
methods are quite di�erent. MRCI underestimates the
ionization potentials by more than 2 eV due to the lack
of treating dynamic correlation e�ects which are un-
balanced between the neutral and ionized states. The
large discrepancies are almost recovered at the second-
order MRCI level. The di�erences between ®rst- and
second-order MRLRT are relatively small, 0:09±0:23 eV.
The wrong direction at the second-order level is proba-
bly due to the size of the basis set and to the di�erent
de®nitions of the vertical ionization energies between
theory and experiment. The ®rst-order MRLRT model
seems to be particularly useful considering the required
computation time. It should be noted that we deter-
mined the wave-operator in a SS way with respect to the
neutral state to maximize the discrepancy, which will be
reduced by means of state-universal or less state-speci®c
approaches for X.

The L-model space is su�ciently large for MRCI to
reproduce the lowest seven ionized states. With this ex-
pansion space, the total MRLRT energies are slightly
higher than the MRCI ones on average. This is probably
due to the nonvariational nature of MRLRT and to the
approximation of the three-body interactions used here.
The di�erences in the excitation energies are, however,
small and are within 0:1 eV. The experimental ionization
energies are reproduced well both in MRCI and
MRLRT. On the other hand, the 3R�g and 3R�u states
include valence-Rydberg mixings. In MRCI, the choice
of the active space is not su�cient to treat these states,
whereas it is expected that MRLRT is capable of re-
producing such mixings. Although there is a non-negli-
gible discrepancy between MRLRT and experimental
vertical ionization energies in the 3R�g state, recent ex-
tensive MRCI results [41] almost agree with our
MRLRT ones for both 3R�g and 3R�u .

Table 4. Vertical excitation en-
ergies (eV) of the CH+ mole-
cule

State Excitationa FCIb CCSD-LRTc MRCI MRLRT

0+1+2 0+1+2+3LPP

1S+ 2 8.55 9.11 8.56 7.59 8.53
1 13.52 13.58 13.85 13.43 13.51
1 17.22 17.32 17.57 16.58 17.21

1P 1 3.23 3.26 3.23 3.24 3.20
1 14.13 14.45 14.18 14.03 14.12

1D 2 6.96 7.89 6.97 6.68 6.93
2 16.83 17.34 16.86 16.22 16.78

3P 1 1.03d 1.14 1.16 1.13

|DE| 0.00 0.36 0.11 0.38 0.02

a Excitation levels of the main components of states based on the Hartree-Fock reference
bRef. [37]
cRef. [21b]
d Fock space MRCC result; Ref. [38]
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5 Conclusion

We generalized CC response theory to MR expansion
spaces. In this method, arbitrary combinations of
e�ective Hamiltonian and response expansion functions
are possible, making use of individual structures in time-
dependent and time-independent components of wave-
operators. As a preliminary application, we calculated
the excitation energies and ionization energies with the
CCSD e�ective Hamiltonian. The numerical results for
CH� showed that the best features of MRCI and CCSD-
LRT are combined, maintaining core-extensivity as well
as recovering defects of the methods, i.e. the lack of
residual dynamic correlation e�ects in the multi-electron
excited states in CCSD-LRT and di�culties of treating
one-electron external excited states in MRCI. In the
calculation of the one-electron ionization processes of
N2, transferability of the dynamic correlation e�ects is
tested by comparing ®rst- and second-order MRLRT.
First-order MRLRT reproduced the experimental
ionization energies well, making good use of the
transferability. It is also demonstrated that all of the
multi-electron valence ionization processes are treated
accurately by second-order MRLRT.

To treat potential energy surfaces of general excited
states with MRLRT, combinations with MRCC meth-
ods are necessary to generate wave-operators free from
intruders. Some of these combinations are also discussed
in this paper.
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